V Workshop CBNA sobre Nutrição em Aquacultura

Sustentabilidade na Aquicultura

Wagner C. Valenti
Centro de Aquicultura da UNESP, CNPq

Mundo Real Estrutura e processos da nossa sociedade

Processo de produção de bens econômicos

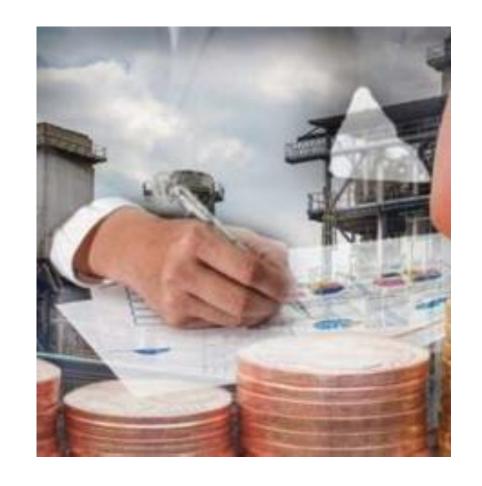
Transforma energia e materiais disponíveis na natureza em

- > Produtos consumíveis
- **≻**Poluição
- **≻Lixo**

Wagner C. Valenti

Custo de produção

As análises econômicas convencionais contabilizam apenas:

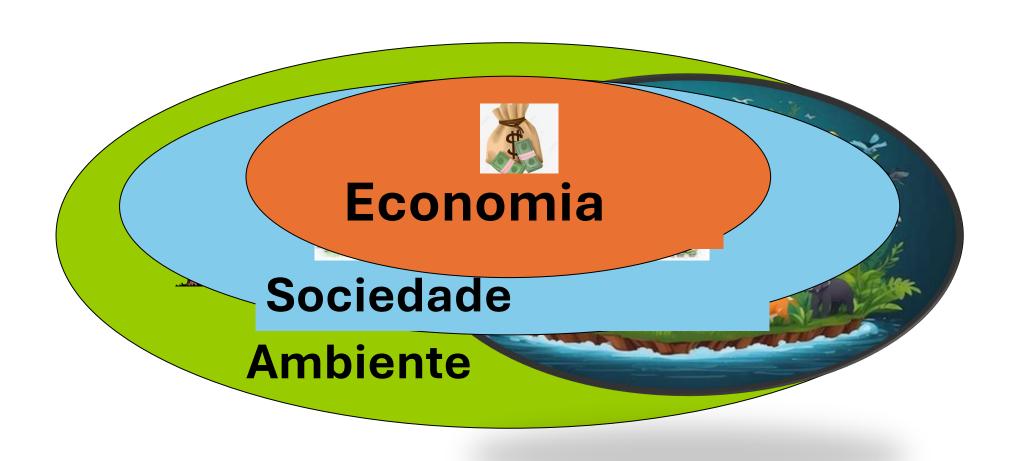

- >\$ da entrada de materiais e energia
- >\$ dos serviços humanos
- >\$ dos custos de oportunidade

Custo de Produção

As análises econômicas convencionais negligenciam o custo dos serviços naturais

- Gasto da natureza na produção dos recursos usados (insumos)
- Gasto para processar e reciclar os resíduos e o lixo

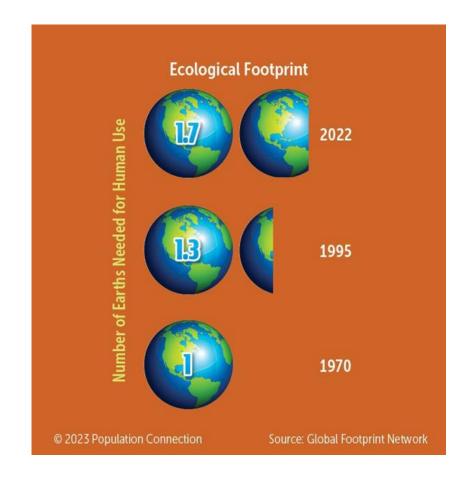
Formação das Sociedades Humanas e Uso dos


Recursos

Naturais

Desenvolvimento dos processos

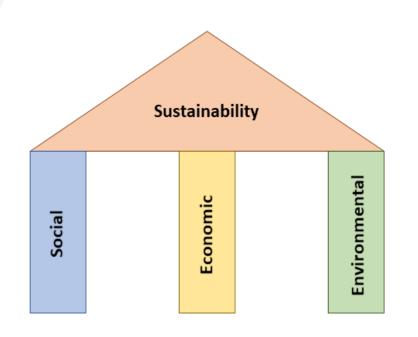
Crescimento econômico x populacional


- Se a economia cresce mais do que a população há enriquecimento e, se a prosperidade econômica for distribuída de forma equitativa, há melhoria no bem estar das pessoas
- Se a população cresce e a economia não, significa que temos mais gente para dividir a mesma quantidade de produtos e serviços e portanto há empobrecimento
- Se a economia cresce na mesma proporção da população, a condição permanece estável

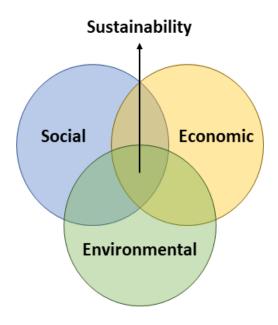
Crescimento econômico x recursos

 Crescimento econômico é associado a maior uso de recursos naturais

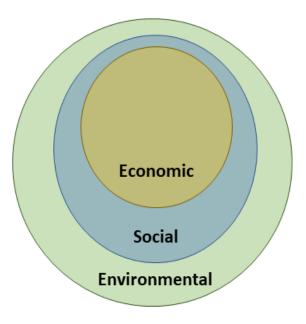
Já estamos usando 1,7 planetas



Uso de Inovações


O aumento da eficiência dos processos produtivos pode levar a aumento da produção com os mesmos recursos naturais

A reciclagem e aplicação dos princípios da economia circular pode levar a aumento da produção sem aumento na extração dos recursos na natureza


Conceptual models of sustainability

1. Three pillars of sustainability

2. Intersecting spheres of sustainability

3. Hierarchical-dependent dimensions of sustainability

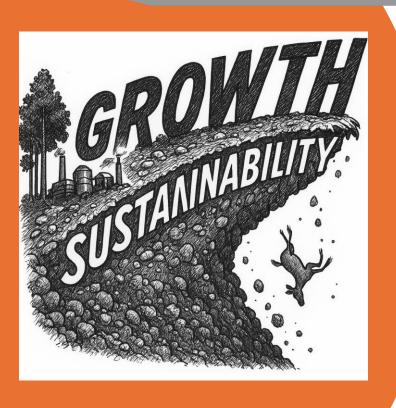
Sustentabilidade

Gerenciamento dos recursos naturais, humanos, financeiros, tecnológicos e institucionais de modo a garantir a contínua satisfação das necessidades humanas para as gerações presentes e **futuras**

A sustentabilidade requer um padrão de vida dentro dos limites impostos pela natureza

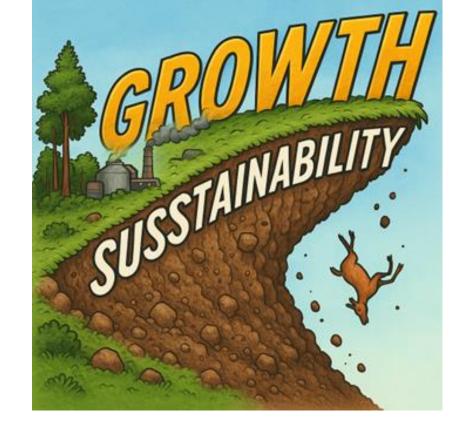
Deve-se viver dentro da capacidade do capital natural

Aquicultura Sustentável


Produção perene, resiliente e rentável de organismos aquáticos, que remunera de forma justa todos os fatores de produção, gera e distribui renda para as populações locais com equidade, e conserva ou regenera os recursos naturais

Resiliência

Capacidade de se adaptar a mudanças e situações adversas


Desenvolvendo um mundo sustentável

- Assumir que o crescimento econômico é limitado pela capacidade ambiental
- Abandonar o paradigma de que é preciso crescer
- Entender que crescimento NÃO significa melhora

Realidades e Equívocos

O desenvolvimento de cada setor da economia (ou dela como um todo) pode ser medido pelo crescimento em volume de produção em um curto espaço de tempo (menos de 20 anos)

Sistemas mais intensivos podem ser mais sustentáveis

Muitas vezes, a intensificação promove o uso mais eficiente das instalações e recursos naturais

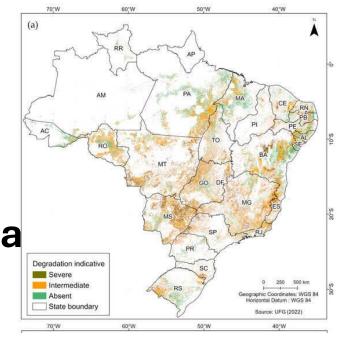
Realidades e Equívocos

Sistemas mais sustentáveis são mais lucrativos

Realidades e Equívocos

Reduzir impactos ambientais significa reduzir a produtividade e/ou aumentar o custo de produção e reduzir o lucro

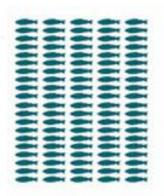
Ações para aumentar a sustentabilidade ambiental


 Instalar o sistema de produção em áreas degradadas

Ex. represas, pastagens, áreas agrícola abandonadas, integração com rizicultura


- Substituir monocultivos por cultivos integrados
- Usar dieta e energia de modo mais racional
- Usar os subprodutos
- Explorar a produtividade natural

Pastagens no Brasil


- Área Total: 177 mi ha (Mha)
- Área com alguma degradação: 110 mi ha
- Amazônia: ~15 mi ha degradados
- Área com potencial de recuperação para agricultura: 28 mi ha

Substituição do boi pelo peixe como fonte de proteína animal

1 hectare é capaz de produzir **0,12 tonelada** de carne bovina por ano

10 a 20 t/ha/ano de pescado pode ser obtido em sistemas simples

Pode chegar a 300 t/ha/ano de pescado

No Brasil

produção é ~0,1 t/ha/ano Pode chegar a 0,45 t/ha/ano com adubação das pastagens

A aquicultura gera emissões de GHG 10x menores do que a bovinocultura extensiva

Bovinocultura (2023)

Emissões por kg de peso fresco

- Média do Brasil: 38,3 kgCO₂e/kg carcaça
- Média do Brasil: 20 kgCO₂e/kg boi em pé

Dados ABIEC, SEEG e IBGE

Associação Brasileira das Indústrias Exportadoras de Carne (Abiec) beef report, 2024

Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estufa (SEEG)

Tambaqui

Estimativa por ACV

Emite 2 a 4 kg CO₂e/kg fresco

Emissão direta: 0-20%

Maior parte é emissão indireta relativa à produção de ração, equipamentos, conversão da terra, infraestrutura, transporte de alevinos

Medeiros et al. 2017; Pacheco et al, 2025; Lima et al. em prep.

Pegada Territorial (Land Footprint)

- Produtividade da bovinocultura extensiva ~0,12 t/ha/ano
- Produtividade de tambaqui ~6 t/ha/ano
- Pegada territorial para produzir carne bovina é 50 vezes maior
- Consumo per capta carne bovina no Brasil: 37,50 kg/ano (Abiec)

Transformação de pastagens degradadas em áreas de aquicultura

permitiria a mesma produção de alimento ocupando apenas 2% da área 98% poderiam ser usados para reflorestamento

Considerando toda as áreas indiretas teríamos produtividade 10x maior para tambaqui (ACV, Pacheco et al., 2025)

Convertendo a matriz de produção de proteína animal

ex. 1000 ha de pastagens degradadas

2%

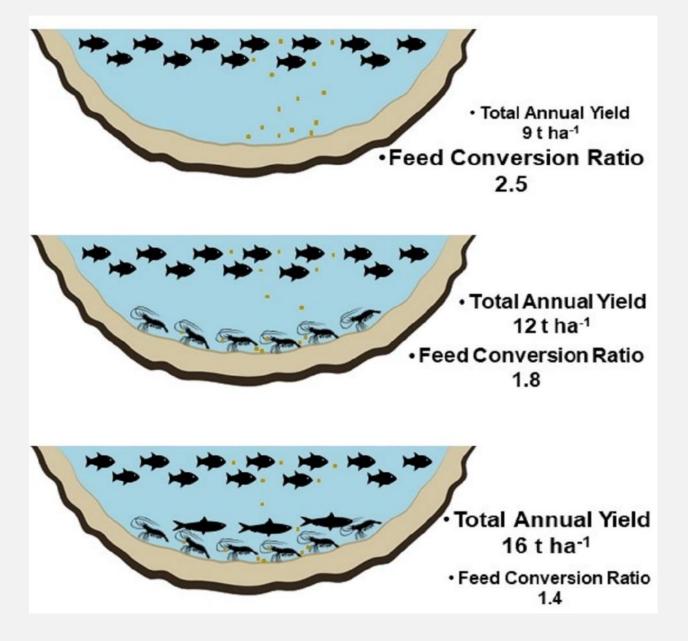
Sequestro de C com a substituição

Considerando 30 anos:

- Regeneração natural: 230.000 tCO₂e
- Regeneração ativa: 540.000 tCO₂e
- Emissão dos bovinos evitada: 75.000 tCO₂e
- Emissão da Piscicultura: 11.000 tCO₂e

Saldo: 300.000 a 600.000 tCO₂e

Considerando US\$ 5.00 tCO₂e


Mercado de Carbono

- Em 30 anos: US\$ 1,5 a 3,0 milhões
- Por ano: US\$ 50 a 100 mil

Vantagens do uso dos princípios da Bioeconomia Circular

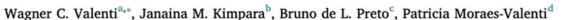
Nutrientes do fundo são aproveitados entre um cultivo e outro

Canteiros erguidos com sedimento em viveiros escavados

Mudas de Vegetais plantadas no sedimento do viveiros pós-despesca

Fotos: Franchini (2018)

Porque medir a sustentabilidade da Aquicultura?


Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

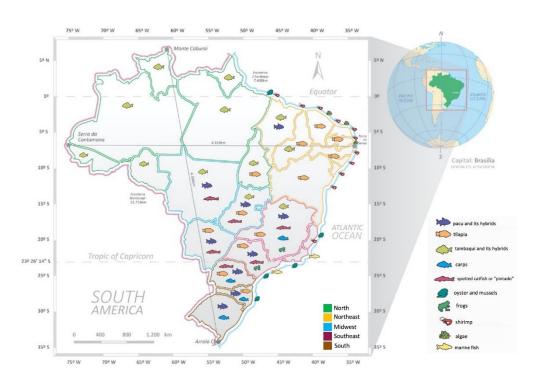
Indicators of sustainability to assess aquaculture systems



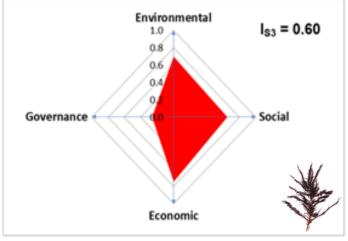
- ^a UNESP S\u00e4o Paulo State University, Aquaculture Center and CNPq, Via Paulo Donato Castelane s/n, Jaboticabal, SP 14 884-900, Brazil
- b Empresa Brasileira de Pesquisa Agropecuária Embrapa Meio Norte, BR-343, km 35, Zona Rural, Parnaíba 64200-970 PI, Brazil
- ^e Ifes Federal Institute of Espírito Santo, Alegre campus, BR 382, km 47, Rive, Alegre-ES, 29520-000, Brazil
- d UNESP São Paulo State University, Aquaculture Center and UNISA Santo Amaro University, Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900 Jaboticabal. SP. Brazil

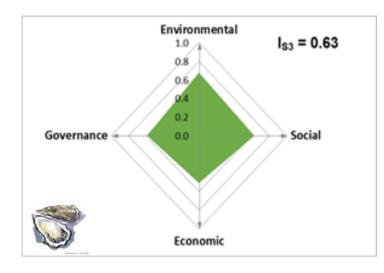
Selecionado pela Comissão Europeia para avaliar a sustentabilidade de companias que atuam na Economia Azul

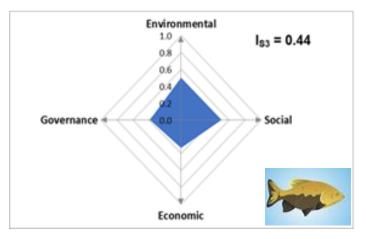
Method to assess aquaculture sustainability

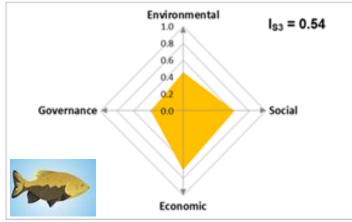


17 SUSTAINABLE DEVELOPMENT GOALS


Testado e aprovado em fazendas - TRL 9

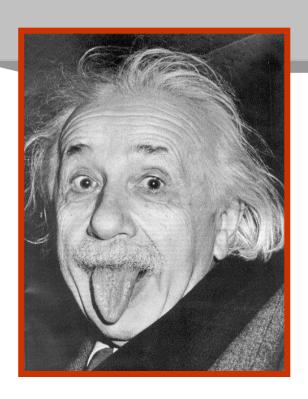

Testado em mais de 80 fazendas de diferentes organismos em diferentes regiões




Macroalgae 0.6 **Filtering** Fish IMTA Molluscs Fish Monoculture

Indicadores e índices

Empresa Certificadora



"Temos que desenvolver novas formas de pensar para resolver os erros provocados pelas velhas formas"

Albert Einstein

